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Fission in nuclear reaction theory 

J E Lynn 
UKAEA, Harwell, Didcot, Berkshire, England 

MS received 1 November 1972 

Abstract. Nuclear fission is incorporated in a formal way into the R matrix reaction theory. 
Definitions of suitable variables to describe fission deformation in terms of individual 
nucleon coordinates are first ofall described. The kineticenergy operator of the many-particle 
Schrodinger equation is then cast into a form that explicitly displays its dependence on the 
new fission deformation variable. A term in the potential energy that similarly displays a 
dependence only on the fission deformation variable is then defined, and so the Hamiltonian 
is broken up into a deformation term, an ‘intrinsic’ term (depending on the other degrees of 
freedom) and a coupling term. This break-up allows the definition of fission channels; with 
the choice of channel boundaries close to maxima in the fission potential energy curve these 
correspond physically to A Bohr’s more intuitive definition of fission channels. This for- 
malism is applied to the treatment of the intermediate structure in fission reactions that 
appears to be a result of the secondary well in the fission potential barrier. A development 
of the formalism is also made in which an intermediate region of configuration space is 
introduced, in addition to the usual internal and channel regions that normally appear in R 
matrix theory. If this intermediate region is defined to include the secondary well of the 
barrier, the dispersion effects that correspond to intermediate structure appear in the ex- 
tended penetration and shift factors (the logarithmic derivative of the outgoing waves in the 
fission channel) rather than in the R matrix of the internal region. This allows a particularly 
simple treatment of the so-called vibrational resonances of fission reactions. 

1. Introduction 

Nuclear fission is a complex phenomenon. Most discussions of reactions involving 
fission lean heavily on explicit models of the process, such as the original liquid drop 
model of Bohr and Wheeler (1939). A later important step in such discussions was the 
recognition by A Bohr (1956) that ‘internal’ quantum states of the nucleus as it passes 
over the liquid drop barrier can play a vital role in determining fission properties. More 
recently, Strutinsky (1967) investigated the influence of nucleon shell effects in determin- 
ing the form of the potential energy surface of the deforming nucleus and concluded 
that important modifications to  the fission barrier could result. In particular, the actinide 
nuclei, the commonest low energy fissioners, can exhibit a double-humped barrier, 
according to this theory. It was quickly realized that such a barrier can give rise to 
striking effects in nuclear reactions involving fission and thus explain some of the dra- 
matic experimental results that had recently appeared (Lynn 1968a, b, Weigmann 1968). 
Much of the discussion of such effects has been based on phenomenological theories 
(eg Bjornholm and Strutinsky 1969) of the fission reaction. Attempts have been made to 
include fission in reaction theories of a more formal nature, however, and this paper 
constitutes a fuller and more definitive version of one of these (Lynn 1968b). 
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2. The nuclear Hamiltonian with explicit reference to deformation 

2.1. The  deformation variable 

A suitable variable that will describe overall elongation of the fissioning nucleus (of mass 
number A )  continuously from its near-spherical form to its division into two fragments 
and their increasing separation must first be defined. We choose here a statistical des- 
cription of deformation in terms of the individual nucleon coordinates. For example, if 
the coordinate system is body-fixed a parameter of the type L = JZiZz is adequate, 
provided that the (body-fixed) z axis is chosen to maximize L. Here, the Zi are z co- 
ordinates referred to the centre of mass. For small prolate spheroidal deformations of 
the kind normally described by a quadrupole dependence of the nuclear radius, 
R = Ro(cco +pY,,(O, $)) (ao being adjusted to preserve constancy of nuclear volume), the 
parameter L N R0(A/5)’’’{ 1 + p(5/47~)”’}, while for large distance of separation 1 of the 
fissioning nucleus into two fragments of mass number A and A ,  

L = l { A , A z / ( A 1  +A, ) }?  (1) 

Equation (1)also applies to the choice ofparameter W = JEiF;, but for small spheroidal 
deformations this parameter approximates to W 2: R0(3A/S)1i2(  1 + 5P2/8n). 

The quadrupole moment, Q = Xi(3Zz -$) is also a perfectly adequate parameter. 
Its limiting form for small spheroidal deformations is Q - 3ARi(1/57~)”~P and its 
asymptotic extended form is Q - 2A,A,12/A. 

2.2. Form of the kinetic energy operator 

With the use of a statistical parameter for the deformation one can transform directly 
the kinetic energy part of the Schrodinger equation for the system as already written in 
terms of the individual particle coordinates 

where m is the individual nucleon mass. The general equation for transforming the 
second derivative in a particular coordinate x i  into the second derivatives of a new set of 
coordinates t j  is 

The desirable limitation on the new set t j  is that on summing a’t+b/axz over all i, the 
cross derivative terms in 3211//dtj atk should vanish. 

Kinetic energy operators in terms of the new parameters are thus straightforwardly 
obtained. For example, for the parameter L = JZiZ;, the new term, referring only to 
L,  is 

and the ‘inertial parameter’ B ,  is just the nucleon mass m. For W = it is 
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These two forms of the kinetic energy operator become, for asymptotically large values 
of L or W, 

by equation (l), where m, is the reduced mass A,A,m/A for the two separated product 
nuclei. The kinetic energy operator for the quadrupole moment is 

This transforms into equation ( 4 )  for asymptotically large Q. For small spheroidal 
deformations the inertial parameter is BQ - (5m/24ARz){ 1 -(5/4n)”’/?}. If, in this limit, 
we transform the kinetic energy operator into its form for p we find Tp = - (h2/2Bs)a’/8/?’ 
with the ‘inertial parameter’ B ,  having just the irrotational liquid drop form 
B, = 3AmRz/8n. 

2.3. Hamiltonian operator with explicit reference to the deformation mode 

We are now in a position to rearrange the Hamiltonian operator of the fissioning nucleus 
to best advantage. We have seen how the kinetic energy operator can be transformed to 
give a component T, that refers only to a suitably defined deformation variable q. The 
remainder of the kinetic energy operator, for the 3A - 4 ‘intrinsic’ degrees of freedom 
(the three centre of mass degrees of freedom are considered already separated out) 
denoted by 5 will, in general, depend on q and is therefore written 7@). 

The Hamiltonian is thus written H = q+ T,+ V(q, 5). The eigenvalues of the 
operator (q(q)+ V(q, t)), for fixed q, are labelled cp((). Let us now write V(q) = c0(v)  and 
H = q + V(q) + T,(q) + V(q, 5) - c0(q).  An ‘intrinsic’ Hamiltmian term Hi,,, can now be 
defined for some chosen value of deformation qo , and a ‘coupling’ Hamiltonian term H ,  
from the remainder. Thus 

where 

It is useful to generalize the intrinsic Hamiltonian to any other value of deformation q. 
The eigenvalues and eigenfunctions of Hint(q) are denoted by &p(r]) and I&). From the 
definition of Hint the eigenvalues L?@(q) are just cp(q)  - c0(q),  that is, the intrinsic excitation 
energies with respect to ‘ground’ at  the fixed deformation q. The eigenfunctions and 
eigenvalues of H ,  are denoted by @“(U) and E , .  

2.4. Expansion formulae for  the intrinsic wavefunctions 

It is useful to be able to expand the intrinsic wavefunctions defined at  one deformation q 
in terms of those defined at  some special deformation qo .  We define the expansion 
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coefficients as follows : 

The inverse expansion is 

We have the usual relations 

and, from the complex conjugate expansions 

3. Inclusion of fission in R matrix theory 

With the decomposition of the Hamiltonian given in equation (6 )  i t  is formally straight- 
forward to include fission in R matrix reaction theory. 

The channel structure of the A particle system is defined in the usual way for the 
simpler channels in which the system separates into two composite particles, with 
radial separation r c ,  one being very small compared to the other (eg is a nucleon or  
a particle). Each channel c in this case is labelled by the internal state of excitation of 
the large particle (the residual nucleus), their relative orbital angular momentum and 
their total internal angular momentum (channel spin) ; the quantum state (channel 
function) comprising these quantities is denoted by cpc. The channel regions of con- 
figuration space are delineated from the internal region by a channel radius U, denoting 
the minimum radial separation of the two particles in the channel. The fission channels 
are defined similarly by the state of intrinsic excitation p of the system and the channel 
entrances are specified by a channel deformation q o .  

In the internal region of configuration space thus defined by the totality of channel 
radii and deformations, eigenstates X j ,  (with eigenvalues E, )  of the system can be defined 
as solutions of the Schrodinger equation with appropriate boundary conditions at each 
channel entrance for the logarithmic derivatives of the wavefunction for motion in the 
channel. For consideration of fission channels an appropriate expansion of such an 
internal eigenfunction is in terms of product pairs of the quasi-vibrational functions 
@,,(q) and the intrinsic functions x P  defined at  the channel deformation qo.  Thus 

Here the superscript p on the vibrational function indicates that a separate set of vibra- 
tional states can be defined for every deformation channel labelled by the intrinsic 
state x,, ; this allows the imposition of a different (energy independent) boundary con- 
dition on @ for every channel p 
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Here f(g) depends on the particular choice of form for g ;  for q = L i t  is L'A-1)!2, and 
for q _= 9 i t  is 

The integral for products of pairs of general solutions Y of the Hamiltonian over the 
internal region can now be deduced by Green's theorem. For the usual particle chan- 
nels the procedure and notation is given by Lane and Thomas (1958) with the result 

where 

are the 'value' and 'derivative' quantities of the wavefunction Y at the entrance to 
channel c and J d Y  denotes the surface integral over the internal region of configuration 
space. 

The extension of this kind of result to the fission channels is straightforward. The 
extra contribution to the right-hand side of equation (10) is 

where we use the expansion Y n  = Z,.?;~X, (see Appendix). 

above are thus defined as 
The value and derivative quantities corresponding to equations (loa) and (lob) 

By reason of the boundary conditions (9) (and the corresponding ones for the particle 
channels) the orthogonality of the X ,  is established. This allows the expansion of a 
physical wavefunction Y in the internal region in terms of the X , ,  and hence, following 
Lane and Thomas (1958), the deduction of the R matrix relation between value and 
derivative quantities at  the surface, 

Here the sum over channels c is generalized to include the fission channels q. The R 
matrix element is 

The reduced-width amplitude quantities occurring here are the value quantities of 
equations (loa) and ( l l a )  applied specifically to the basis states X , .  The deduction of 
the collision matrix of the system by matching of incoming and outgoing waves in the 
channels to the internal wavefunction through equation (12) and the logarithmic 
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derivatives of the outgoing waves, and hence the deduction of cross sections, are then 
achieved by the standard methods. The logarithmic derivatives of outgoing waves 
(defined as the radial solution, with asymptotic character of increasing separation, of 
the radial Schrodinger equation in the channel) in the particle channels have the usual 
notation 

L, = [(fi) (%)I = s,+iP,. 
Oc a ~ c  r c = a c  

Here p, is the product of wavenumber k ,  in the channel and radial separation r , ,  and 
S ,  and P,, the shift and penetration factors, are both real quantities. The corresponding 
quantities for the fission channels are defined as 

the wavefunctions @(,) being the (outgoing-type) solutions of 

beyond the channel deformation q o .  The relationship between the collision matrix U 
and the R matrix deduced from matching is 

The elements of the diagonal matrix 51 are the ratios of incoming wave to outgoing 
wave (ZJO,) evaluated at  re = a,. The total cross sections for particular processes bear 
the well known relation to the collision matrix, 

The collision matrix can also be expressed as a function of a reciprocal level matrix A 
that incorporates the properties of the R matrix states X i ,  

The matrix A is the inverse of the level matrix C, which has elements 

CA,, = (EA - E)d,,, - c (L,  - ac)?A(c)YA(c,) 
C 

= (EA-E)dAa8-AAA, +iirj . i , .  

The level shift and width quantities introduced in the last equation are 

& A ,  = c ( S c - ~ c ) ~ i ( c ) Y , ( d )  

rlAf = 2 c PcYA(c )YA(r , )  

C 

c 

and in the narrow level approximation, for which all such quantities must be less than 
the level spacings, the diagonal quantities ri and A, give the widths and positions of the 
resonances that appear in the cross section, 

the partial widths being r,(,) = 2P,y:,,,, 
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The collision matrix may also be expanded about its poles EjH)--+iirjH)in the complex 
energy plane, 

where Pa, g b  are threshold factors, GI(,), 
c [ ( b )  are associated phase factors. The numerator ofeach term in the sum of equation (19) 
is the residue of the pole at ElH)-3iFjH). 

In the narrow-level approximation there is an obvious relation between these poles 
and the R matrix parameters, that is, EIH) - Ej -Aj, ,  TiH) - I-i, Gta)  - rj,(a) and 

When the narrow level approximation is not valid there is no such simple corres- 
pondence between the poles and the R matrix parameters. Diagonalization of the level 
matrix C is necessary to determine these poles and hence the resonance properties in the 
cross section. 

are partial width amplitudes and 

( / ( a )  5 n~ 

4. Spda’ization of the reaction theory to the double-humped fission barrier 

Further development of the reaction theory requires the input of physical models. 
In the case of a fission barrier with a single maximum, like the liquid-drop barrier, the 
development can only be of a quantitative kind, giving the values of the reduced widths 
and derivatives of the internal eigenstates and the detailed energy dependence of the 
shift and penetration factors. The Strutinsky theory of a double-humped barrier allows 
further development of a more qualitative kind however. The emphasis in this develop- 
ment can be placed either on classification of the properties of the internal states (as in 
@j 4.1 and 4.2 below), or on dispersion characteristics of the shift and penetration factors 
(as in § 4.3). 

4.1. Properties of the internal ( R  matrix) states in the presence of a double-well 
deformation potential 

4.1.1. ‘Vibrational’ states of the double weN. The nature of the eigensolutions of 
H ,  = T, - Y(q) (equation (6a)) for the case in which V has the Strutinsky double-well 
behaviour is considered first. Qualitatively, i t  is anticipated that for eigenvalues E ,  below 
the intermediate barrier of the two wells (at q A  in figure l), the eigenfunctions Ov will fall 
into one of two classes; class I eigensolutions will be those with predominant amplitude 
in the well corresponding to lower deformation, and class I1 solutions are those of 
opposite behaviour. The class of vibrational state will be denoted by use of a super- 
script Roman numeral on @, or a subscript Roman numeral on the subscript v. For 
their use in the description of internal states of the system they will be discrete states, 
boundary conditions being imposed in the region of, or beyond, the outer barrier at  v B .  

The quantitative description of the class I and class I1 vibrational states, with par- 
ticular reference to their relative amplitudes, is described elsewhere (Lynn 1968b). The 
characteristics of the potential have been found by analysis of fission data to be such 
that for energy eigenvalues one half MeV or more below the potential at  q A ,  the ratios 
of wavefunction amplitudes in the two minima are normally very different from unity 
and permit a marked separation of class I and class I1 vibrational states. 
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n 
c 

Deformation q 

Figure 1. Schematic diagram of Strutinsky form of potential energy Y' of deformation. 

4.1.2. The  internal compound states: basic treatment. The internal states X ,  can be 
expanded in the manner of equation (8). Substitution of this expansion into the 
Schrodinger equation with the Hamiltonian in the form (6) followed by multiplication 
by (@$')x,.)* and integration over the internal region, gives 

(E\!!')+ 8,. - EJCq,,,,) + C , ( , , ) ( ~ ~ ~ " ~ , , I H c ~ @ ~ ' ~ , )  = 0. 
vf i  

The elements ofthe Hamiltonian matrix that must bediagonalized to  give the eigenvalues 
E ,  and the coefficients (from the unitary transformation matrix) are therefore 

H v ' f i ' , v p  = (€$')+ 8P')8vp,v'p' + (@"t"~,.IH,I@y'X,>. 

The Hamiltonian matrix H can be partitioned into four submatrices that classify the 
elements of H according to the class of the vibrational states specified in these elements. 
Thus, the submatrix HI,, has elements 

H v i f i ' , v r p  = (4') + ~ P , ) ~ v I P , " i p ,  + < @ $ ' ) ~ p w @ ~ ) x p ) >  

H v i f i , , v , l p  = <@$')x~~IH~I@$!x~) 

the elements of HI,,, are 

and so on. Because of the weak overlap of class I and class I1 vibrational functions at 
any given deformation q it is expected that the elements of H,,,, and HI,,, will be very small. 
The submatrices HI,I and HII,,, may be separately diagonalized by transformation with 
the unitary matrices S and T respectively, and we can obtain 

where S-'H,,,S and T-  'H,,,,,T are diagonal with eigenvalues E,, and El l I  respectively. 
The correspondingeigenstates of HI,, and HII,,, are termed respectively class I and class I1 
internal compound states (denoted by X f ,  Xy:!) and their expansion coefficients are 
given by elements of S and T : 
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The nondiagonal submatrices have the elements, 

(s- lHI,IIT)lllII = c O.IlV,P') (VIP'"lP'') (~~lIP"l41) = (XY!lH,lXC::,,> ( 2 1 4  
~ IP ' . "" '  

( T -  l ~ l l , l ~ ) ; . , , , ; . ,  = <x:!:;l~clxY;). (21b) 

For compound states below the intermediate barrier i t  is expected that the admixture 
of vibrational states (with large amplitude in both wells) from above the barrier will be 
very small. The matrix elements of equation (21) thus demonstrate the expected property 
that the interaction of class I and class I1 compound states below the barrier is very weak. 
Even though the matrix W-'HW still has to be diagonalized to obtain the internal 
states X, used in reaction theory, the properties of the individual class I and class I1 
states will be strongly localized in the ultimate cross sections. 

4.1.3. Examples of the use of the class I and class I1 internal state description. (i) Per- 
turbation coupling of class I and class I1 states. We normally expect, both from the quali- 
tative features of the Strutinsky theory (an 'oscillating' shell correction superimposed 
on a liquid-drop barrier) and the detailed calculations, that the secondary well at larger 
deformations will be shallower than the first. Consequently, at a given excitation energy 
the density of class I1 states is expected to  be considerably less than that of class I states. 
For weak enough values of the interaction matrix elements the diagonalization of the 
matrix W-'HW will result, to a good approximation, in the mixing of each class I1 
state with its immediate class I neighbours. The limiting case of very weak coupling is 
described by first-order perturbation theory (Lynn 1968a, b). In the neighbourhood of 
a given class I1 state there will be one state that is, in zero order, the class I1 state with 
eigenvalue 

and eigenfunction 

while the other states have the properties 

and 

Second-order perturbation expansions are also quoted in the above reference as are the 
results for the case in which there is accidental near-degeneracy of the class I1 state and 
one of the class I states. 
(ii) Lorentzian coupling of class I and class I1 states. In the more general case of'coupling 
between a single class I1 state and its class I neighbours the resultant mixing is stronger 
than a simple perturbation ; no single resultant state can be described as predominantly 
class I1 in character. The eigenfunction X, can be expanded thus 
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and the expansion coefficients and eigenvalues are obtained from the coupled equations 

CI(I I ) (EII  - E,) + CI(III)(~IIHCl~ll) = 0 

C C~(~I~(&IHcIJ-t) + (EAIl - EJC.qllr) = 0 

(220) 

(226) 
I1 

and the normalization condition CIIC: ( l I )+  C:(lll) = 1. The result from equation (22a) 

substituted into equation (22b) gives the eigenvalue relation 

Further algebraic manipulation leads to the result (Lynn 1968b) 

In the uniform model, in which the class I states are equally spaced at intervals D, and 
have equal values H: of the squared matrix element ~(L,/Hc~AIl)~2, this can be transformed 
to 

This is a lorentzian form with halfwidth (at half-maximum), W, = J(n2H,4/D? + H:). 
In practice the matrix elements ( ~ , ~ H C ~ & )  are far from being uniformly distributed. 

Hence the lorentzian profile for the admixture coefficients given by equation (25) can 
only be an ideal, about which the individual values will be scattered. The quantitative 
aspects of this distribution are discussed elsewhere (Lynn 1969, 1972). Other aspects 
of the detailed shape of the admixture profile can be treated by this shape-classified 
eigenstate method ; for example, the background reduced fission width term due to the 
class I levels and possible interference between the lorentzian and background term are 
discussed in another report (Lynn 1973). 

4.1.4. Discussion of the coupling matrix element. (i) Illustration with a simple model. Some 
aspects of the behaviour of H, can be made explicit by use of the expansions (7). From 
these and the form of H, as given in equation (6c)  we can obtain 

(VPIHCIV’P’) = ( V I  c b,,.,(rl)b~,,,.(?)&,,.(?)lV’) - L,~,p,&phJ) (26) 
PfC 

which enables us to calculate the coupling matrix elements for chosen models of the 
behaviour of the intrinsic states xc as a function of deformation. 

A very simple model that illustrates the use of equation (26) and at the same time 
provides some insight into aspects of H, that may affect correlations and interference in 
the class I1 resonance behaviour of reduced widths, comprises two single-particle states 
with energies SA, 8; which depend on deformation and intersect at  a given deformation 
q I  (see figure 2). These Nilsson-type levels are assumed to have the same set of good 
quantum numbers and a residual interaction between them that is described by a 
matrix element U independent of deformation. The separation of 8; and SA is assumed 
to be linear, 8; -8; = la(q -q l ) J .  The separation of the diagonalized states is therefore 
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Figure 2. Schematic diagram of two intersecting Nilsson states, energies & b  and Si, with 
residual interaction (matrix element t.) between them. Final state energies are go and &, . 

g1 -go = i ~ ~ ( 9 - v ~ ) ~  $ 4 ~ ~ ;  
states at large separation ( q  -+ CO) are 

while their eigenfunctions in terms of the single particle 

(where 9 ( q )  = (l~z+2:2)”2 and Sb = 0~5[{a2(q-~l)Z+4u2}1J2-{a2(q-ql)  2 1 1  , 2 1) for 
q 2 q l .  For q < q1 the right-hand sides of equations (27a and b)  are interchanged. 
From these equations the overlap coefficients b, and hence the coupling matrix elements, 
are easily calculated. 

Examples of the matrix elements are shown in figure 3 for a few different conditions. 
The matrix element (~ l (qo )~Hc~~o(qo) )  and the combination 

AE = €1 + (Xl(~o) lHclXl(vo))  - (Xo(~o) lHclXo(~o)> 

are shown for 2: = 0.1, a = 1.0, q 1  = 0.3 and ‘lo = 0.3,0.6 and 3.0. As an illustration of 
the implications of these consider the second example. Suppose that the lowest vi- 
brational wavefunction is centred about q = 0 and is narrowly confined to this region 
so that (@o~lIH,I@o~o) N - 0.17 and (@o~AE~@o) N - 0.14. Diagonalization ofjust the 
states @oxo and @ox1 yields an eigenvalue separation for the eigenstates Y o  and Y ,  of 
0.35 and expansion coefficients T;(oo) = 0.3, = 0.7 for the lower state. The 
implication of these numbers is that there is a degree of mismatch between the ground 
state of this simple system with zero-point vibration about q = 0 and the lowest 
‘channel state’ at  qo ; the fission-reduced width of the ground state through the lowest 
channel is not the value (h2/2Bf(v]0))cP~0)2(v]0) that might be expected intuitively, but the 
smaller value (~2/2Bf(v]o))T~coo,~~bO’Z(?o). This model has obvious qualitative relevance 
to the problem of the relative spontaneous fission halflives of neighbouring odd, odd- 
mass and even nuclei. 

This illustration can be extended with the assumption of an intermediate barrier at, 
say, q = - 0.6 and no more level crossings in the region v]  = - 0.6 to q = 0. If the eigen- 
states at  q = 0 are expanded in terms of basic intrinsic states set up at 9 = -0.6, the 
new expansion coefficients are T;,,,, = 0.966, T&ol, = 0.034. These can be taken as a 
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-0.2 
0 0.2 ql 0.4 0.6 

r) 

Figure 3. Calculated behaviour of energy difference 

AE = 8 ,  + <Xl('lO)lHCIXl(~O)) - ~ X o ( ~ o ) l ~ , I X o ( ' l o ) )  

and matrix element of interaction (~l(qo)~Hc~xo(qo)) as function of deformation for a = 1.0, 
U = 0.1. Basis states x for these curves are taken at qo = 0.3 (full curves), qo = 0.6 (dotted 
curves), 'lo = 3.0 (broken curves). 

measure of coupling into class I states at still lower values of q ;  i t  is obvious that the 
coupling through the lowest 'channel state' at q A  is not correlated with the fission width 
through the lowest channel at q o ,  A more explicit calculation of the coupling matrix 
elements can be made with the introduction schematically of a class I and class I1 
vibrational state, the wavefunctions of which are confined closely around q1 = - 1.2 and 
qI1 = 0. The amplitudes of the tails of these functions in the opposite well are denoted as 
c x (amplitude of opposite class vibrational state). The coupling matrix elements can be 
expanded thus, 

(@vIXn lHc I 'ym> = ( @ v I X n l H c l ~ v I , X o ) T m ( v I I o )  + (@vIXnlHcI@v1lX1) Tm(v111). 

Using values of ( X , , ~ H ~ I X ~ )  N 1.3, ( x ~ ~ H , I x ~ )  N -0.5 and (XIJHcIXI) -1.3, which 
are appropriate for the centre of the class I region ( q  I: - 1.2) in our model, we find that 

(@v,~o~Hc~Yo) N -0 .27~  and ( @ v I ~ o ~ H c ~ Y l )  N - 1 . 2 ~ .  

(ii) Useful expressions for the coupling matrix element. For the purpose of deriving 
estimates of the coupling matrix elements, the deformation q o  at which the basic intrin- 
sic states x,, are defined, is chosen to be at the intermediate barrier q A .  The region of 
deformation lower than this is called region I while region I1 comprises deformations 
greater than q A ,  and partial matrix elements confined to  integration over a particular 
region of q are denoted by a subscript. The matrix element is now split as follows : 

('IIH~I'II) = (~1lHcl'II)region I + ('IIHcl'1I)region 

= C ('IIHrIV1I"')region ITLn(v Iw" )  + 1 SlI(vr~,)(VICL'IHcI;Ill)region 11 

N C ('IIHcIV1"')region I ~ ~ I I ( ~ I ) T ~ I I ( ~ I I B " )  + C S~I(~~r ' )CvI(v, I ) (VI I I1 I (Hc(E' I I )TeBiOn 11 

VIW" i,I,,' 

VlW" VI,,' 
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in which we write the vibrational wavefunction QVII  in region I as cyII(yI~Q)yI, the state 
Q V I  being that one closest to QVII in energy, and similarly for QvI in region 11. The coef- 
ficients T,  S can now be written as lorentzian-type functions (equation (25)) with damp- 
ing halfwidths WvII,L”,i.II, W,,,.,,, of modes vp into the class I1 and class I states respectively, 
while the quantities (Al~Hc~vIp”), (vlIp’~Hc~All) can be expressed in terms of the damping 
halfwidths W,,,,,,,, , WVII,~,lll, The final expression for the expectation value of 
~ ~ l l ~ c l ~ l l ~ 2  is 

In sub-barrier fission only one significant term (with v high and p low) is expected 
in each of the sums. On average, the second term is expected to be smaller than the 
first because the lower excitation energy for intrinsic states in the secondary well implies 
that the damping halfwidth WVII,,.,III is considerably lower than WvIar,.II. The expression 
thus demonstrates the existence of vibrational resonance structure in the coupling 
elements. The energy averaged value of the coupling is (assuming 2 W,,,,,,,, _Y hw,) 

The coefficient cYII(, ,)  can be calculated numerically, given the potential and inertial 
parameters of the intermediate barrier. 

4.2. Cross section properties for double-humped j ss ion  barrier 

In the above the channel deformation qc has been assumed to be at or close to the outer 
barrier q B .  For deformations beyond y l B  and up to the scission point, a range of defor- 
mation formally included in the channel, it is certain that strong nuclear interactions 
will operate and mix the wavefunctions formally defined above as separate fission chan- 
nels. However, since it is the sum of cross sections over all the channels that lead to 
fission that is being sought at this stage, this mixing is only important insofar as it 
affects the effective shift and penetration factors at the channel boundaries. The detailed 
way in which these are affected can be discussed by using an extension of the methods 
described in 4 4.3. 

In this paper we are mainly concerned with sub-barrier fission. Hence, only one 
formal channel for a particular intrinsic state X, defined at qB will normally be important : 
this is the state of lowest energy appropriate to the total angular momentum and parity 
quantum numbers (and any other quantum numbers that may happen to be good) of 
the compound nucleus. The discussion will therefore be conducted for one such fission 
channel ; it can be generalized to more than one channel by simply summing the cross 
sections obtained for each. 

4.2.1. Narrow class I1 states. When the total widths associated with the class I1 R 
matrix states (as well as the class I states) are small, by which is meant in a general sense 
that they are less than the spacings among all coupled R matrix states, there is no 
difficulty in calculating or interpreting the cross section to be expected. A resonance 
will be associated with each coupled R matrix state, and the resonance parameters (in 
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the single-level approximation) will be simply related to the parameters of that R matrix 
state by equations (17a), (17b) and (18). 

4.2.2. Broad class II states. The single-level shapes described above become very dis- 
torted when the total widths associated with the R matrix states approach the level 
spacings, and if the total widths exceed the spacings the cross section pattern bears no 
easily recognizable relation to the R matrix parameters. 

The simplest case to treat in this last category is the one in which a class I and class I1 
state are accidentally degenerate and their widths are greater than the spacing of the 
final eigenvalues (Lynn 1968a, b). Of more importance is the case in which the fission 
width of the class I1 state overlaps many class I states. When the coupling between the 
class I1 and class I states is very weak a method for treating this case has already been 
given (Lynn 1968b). 

For rather stronger coupling a perturbation treatment involving continuum states 
can be made. From R matrix theory an expression for the internal wavefunction 
of the nucleus in the presence of unit incoming flux in only one entrance channel e can 
be obtained (Lane and Thomas 1958): 

in which the matrix A is the reciprocal level matrix of equation (17). Equation (29) can 
be applied to either class I or class I1 eigenstates, X i  or X : ,  for all the quantities on the 
right-hand side, to give the zero-order wavefunctions Y1(e)(E), Y1l(e')(E') in the absence of 
coupling between class I and class I1 states. For the perturbation treatment the channel 
e of the class I function is specialized to the neutron channel n while channel (e') in the 
class I1 function is specialized to the fission channel p. At the same time the complex 
conjugate of the latter wavefunction is used ; this corresponds to the internal wave- 
function when there is an outgoing wave in only the fission channel. These wavefunctions 
can be made discrete though dense by containing them in boxes (with specific boundary 
conditions) of very large dimension. These dimensions are a, for the neutron channel 
and qp for the fission channel. The normalization factors are v,l/2/a,l'2 for the class I 
wavefunction and u ~ ~ 2 / a p  for the class I1 wavefunction, U, and up being the relative 
velocities associated with the (asymptotic) waves in the neutron and fission channels. 
The densities of class I and class I1 states thus defined are an/unh and qp/urh respectively. 
By perturbation theory the first-order approximation to the actual wavefunction can 
be either 

~ X P (  -i+J 1 '1tt1itri!t?p)X1it$ 
Z r t 4 i  

the contour integration of equation (30) can be performed. When the levels are well 
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separated, in the neighbourhood of any one of them we obtain 

and is valid if ~(XA,IIHintlX,i)l << 3rl,,. This wavefunction can be written in just the 
form (29) for levels I , ,  provided that the basis wavefunctions X, are taken to be 

Thus, for narrow resonances, fission widths rlip, are introduced ; the fission width 
amplitudes are 

for non-interfering class I levels. Here the expression is written for only one channel (n)  
of the class I states but can obviously be extended to others. This form corresponds to 
a very broad resonance in the cross section with fission width essentially r,II(a) and 
neutron width amplitude given by 

Strictly speaking the width amplitudes of equations (3 1) and (32), being complex, 
should be interpreted as the partial width and phase amplitudes exp(i(f,ip)) and 
CL,,(,,) exp(itl,,(,,J of the S matrix pole expansion in equation (19). 

4.3. The  extended penetration factor:  channel dispersion efSects 

In circumstances in which the widths of R matrix states are greater than their spacings, 
the S matrix poles and hence the cross section resonances bear no simple relation to the 
R matrix parameters. In addition, the matrix element of the coupling term in the Hamil- 
tonian, which plays a central role in the theory presented above, is often a very difficult 
quantity to survey; this particularly applies to its energy variation, and to obtain in 
cross sections the long-range energy variation expected by physical intuition it is often 
required to include 'distant levels' in the formal expressions. It can be more convenient 
in these circumstances to define the internal and channel regions in such a way that the 
physical content of the situation is carried more by the shift and penetration factors. 
This idea is often utilized in a crude way for the case of 'pure vibrational resonances'- 
zero damping in the secondary well ; a transmission coefficient is calculated for a wave 
traversing the entire double-humped barrier, and this is used loosely as the penetration 
factor. In this section we examine this method more closely, beginning with just this 
'zero-damping' case. 
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4.3.1. Zero damping in the secondary well. (i) Construction of logarithmic derivative. If 
no damping of the vibrational wavefunctions in the secondary-well region is assumed, it 
is very simple to introduce the extended penetration and shift factor method. The 
channel deformation parameter r] ,  is chosen at a smaller deformation than the inter- 
mediate barrier at q A .  The internal states for the R matrix are introduced with a real 
energy-independent boundary condition BU for each channel labelled by an intrinsic 
state xp at r],. There is now no question of classifying the vibrational states within the 
internal region. Outgoing wavefunctions satisfying equation (14) are now calculated 
right through the secondary-well region and their logarithmic derivatives are calculated 
at qC to give the shift and penetration factors as defined in equation (13). 

(ii) Numerical examples for rectangular barriers. The shift and penetration factors are 
easily computed in the case of a barrier composed of constant sections as in figure 4. 

Figure 4. Double-humped barrier with rectangular elements used for calculating results of 
figures 5 and 6. The mass parameter employed here is B = 4.065 x g cm2. 

The outgoing wave in the final region q3 to CO has the form exp(ik,r]). In the other 
regions it is c, exp(ik,q) + b, exp( - ik,?) or c, exp( - iq) + b, exp(ic,r]) depending on the 
sign of E-gU-V-(tl). From the matching of these waveforms and the values of the 
(complex) coefficients co, bo at r ] ,  the logarithmic derivative of the outgoing wave @(U) 

can be obtained. In addition, the transmission coefficient, T = 1 - l/lc412, of a wave 
with kinetic energy E - go - Yo proceeding from r]  = - CO to r]  = + CO, can be obtained. 

An overall plot of the transmission coefficient as a function of energy for a barrier 
with parameters that are of the order of magnitude of those expected in actinide fission 
is shown in figure 5 .  It is well known that such a plot shows peaks, the vibrational 
resonances, that correspond closely to the positions of eigenstates in the secondary well 
of the barrier. It is commonly assumed in the phenomenological theory of fission that 
the fission strength function is simply proportional to this transmission coefficient, 
r(,, ,/D = T/2n. 

Close to the positions of the vibrational resonances in the transmission coefficient 
the shift and penetration factors undergo anomalies. These are shown for just one 
vibrational resonance in figure 6 .  

4.3.2. Interpretation of shift and penetration factor behaviour. (i) One-dimensional case. 
The behaviour of the shift and penetration factors as shown in figure 6 can be discussed 
within the framework of an extended version of R matrix theory. This is confined first 
to the one-dimensional case in which we consider only the deformation degree of freedom. 
This potential energy V- is shown schematically in figure 1, and now two channel 



558 J E Lynn 

Energy (MeV) 

Figure 5. Transmission coefficient through barrier of figure 4. 

i\ 
i i  i 

Figure 6. Transmission coefficient (full curve) over a single vibrational resonance at 2.805 
MeV in figure 5 and corresponding shift (chain curve) and penetration (broken curve) factors. 

deformation parameters qc and q d  are chosen, one in the region of each potential energy 
maximum. Solutions of the Schrodinger equation (equation (64) are now found with a 
boundary condition that is real and energy independent at the inner boundary qc ,  and 
at q d  is equal to the logarithmic derivative of the outgoing wave proceeding beyond qd 
with chosen energy E : 

(34) 
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The eigenvalues C, are complex (as in the theory of Kapur and Peierls 1938). The 
Green's theorem relation for the eigenfunctions @ in the intermediate region qc to q d  is 
just 

This establishes orthogonality for the solutions of equations (33) and (34). Expansions 
of solutions (between qc and qd) of the Schrodinger equation at real energy E are made in 
terms of these (complex) intermediate states a,, @,(q) = ZvAv@,(q), the coefficients in 
which are A ,  = J;;@,@, dq. By means of equations (35) and (34) this leads to a relation- 
ship for the logarithmic derivative of Of at ?,, 

If the intermediate eigenstates v are to have reasonably uniform properties the poles of 
this expression for the logarithmic derivative must be located approximately midway 
between the eigenvalues E,. In a uniform model for the eigenstates v, the poles occur at 
energies E ,  N $E, + E,+ 1)  and their residues are D:/n2y:(q,). The imaginary component 
w, of the pole E, is just the mean of that of the eigenvalues E, and E,+ 1 .  Because of the 
Kapur-Peierls type of boundary condition imposed at l]d it follows that this is just the 
halfwidth for decay of an intermediate state at energy E through the outer barrier B. In 
the region of the pole E, = e,, - iw, the logarithmic derivative at qc thus has the form 

the width of the resonance term in P being given by the decay width through the outer 
barrier. 

The poles E ,  can be identified with the 'natural' vibrational states of the secondary 
well ifl the following manner. At q, the wavefunction of such a vibrational state will be 
exponentially increasing (exponentially decreasing towards smaller deformation) with 
attenuation wavenumber IC. On the other hand an outgoing wave from the primary well 
region will, in the absence of resonance conditions, be exponentially decreasing. Thus 
the boundary condition to be chosen for the intermediate eigenstates, according to 
equation (34) is the latter one, 98 = - K. The effect of change of boundary condition on 
the eigenvalues and reduced widths has been discussed by Teichmann (1950). The new 
eigenvalue E?) resulting from a change of boundary condition from g to 9#') is given in 
the present case by 

and the new reduced widths amplitudes yt(l)(qc) by 

Relation (37) results in the eigenvalues E?) being pushed to almost midway between the 
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E, (ie very close to the poles E,,) on changing the boundary condition to = ti, for 
large ti, while in the uniform case the new reduced widths for the vibrational states 
become 

The logarithmic derivative at qc is thus 

(ii) M a n y  degrees of freedom. The result for the logarithmic derivative at the inner 
surface of the intermediate region can be generalized to the case of many degrees of 
freedom. The discussion is confined to the deformation channel for simplicity. The 
Green’s theorem relation for the intermediate region, denoted by z(int) ranging from qc 
to q d r  is now written in the form 

where Y,, = Z p @ # x p ,  Y ;  = Z,@#x,*. This expression can be generalized further by 
recognizing that the intrinsic states z p  for the wavefunction expansions do not need to be 
the same at different deformations. Two sets of intrinsic states can be defined, one set 
at qd and the other at qc .  The existence of these two sets is assumed implicitly in the 
argument below. The value and derivative quantities at q, and & are denoted by 

(and similarly for q d ) .  Eigenstates for the intermediate region are denoted by 2 ,  ; they 
are solutions of the nuclear Hamiltonian with boundary conditions 

in which @,(@, is an outgoing-wave type solution of the Schrodinger equation with the 
deformation Hamiltonian (T,+ V(q))@((@) = E(%<(+), the energy being that available to 
the deformation mode, = E - gp(qd). With these boundary conditions (and nor- 
malization) orthonormality can be established from equation (39) in the sense that 
Sr(inl) dzZ:Z,. = 6,,.. Eigenvalues of these states are denoted by F,, and they are com- 
plex, the imaginary component representing the halfwidth for decay through channels 
p open at q d  and leading to fission. 



Fission in nuclear reaction theory 56 1 

A general solution Y of the Schrodinger equation at energy E can now be expanded 
in terms of the Z,, "(E)  = ZIA,Z1 and the coefficients A ,  determined through the 
Green's theorem relationship, 

If "(E) is the continuation of outgoing waves in the channels p it must have the boundary 
conditions (40) at q d ,  and therefore its expansion becomes 

" ( E )  = - 

from which the logarithmic derivative of " ( E )  at qc in the channel ,U is 

Here, the intermediate R matrix element is Rin,,pp. = Z1v,p(qc)v,,,(qc)/(F1 - E) .  The poles 
of the right-hand side of equation (41) are the complex energies for which det Rint = 0. 
The poles are denoted by 4 -i"w; and the residues of (R;:)pp, at the poles by 
Thus the logarithmic derivative in channel p can be expanded 

When there is essentially only one intrinsic state p (or 'channel' over the intermediate 
barrier) contributing to this expression, it reduces essentially to  the form of equation (38) 
with e, and Gl(+,) replacing e,, , w,, and 4~~y1")~(q , ) .  

4.3.3. Treatment of cross sections by channel dispersion method. (i) The absorption cross 
section and fission strength function. As shown above the logarithmic derivative of an 
outgoing wave transmitted through the secondary well (even in the presence of 'mixing' 
forces) has, in the neighbourhood of a virtual state E ,  associated with the secondary 
well, a dispersion form 

GI L, = S, + iPp = S,, + 3-E-i"w; (43) 

where Sbp is a real, slowly varying background term. This is used to determine the 
collision matrix and cross sections through equations (15) and (16) in which the R 
matrix has now to be constructed for an internal region that comprises only the primary 
well in the deformation coordinate. It is convenient in many applications to determine 
the fission strength function, and this can be assessed by calculating the absorption 
cross section when the system is entered through the fission channel (or channels) p ,  
For this purpose one-channel reduced R matrix theory (Thomas 1955) can be used, 
provided that the widths in all the exit channels are small (r, e) << 0,) and uncorrelated. 
The collision function is just U,, = e'''#'.( 1 - L:R)/( 1 - L,R) where &, = L,, - ~8, 
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(93, is now the boundary condition at  q, for the internal region) and 

R = & / ( E ,  - E  - iW,)> 
a 

with W, = C, rl(e). 
(a) Overlapping R matrix levels. In the approximation of uniform, overlapping R 

matrix levels (W, >> D )  the R function is just ins,, where the reduced strength function 
s, = &)/D. The absorption cross section is proportional to 1 - 1 U J 2 ,  which, in this 
approximation, becomes 

With the introduction of equation (43) for P, and L,, 

wheres,, = S,, - .@,. The absorption cross section (for specific total angular momentum 
J )  is nA2g(J) times this, but is also commonly written as a local average over a sequence of 
(assumed) non-interfering states. In the uniform model (Lane and Thomas 1958) 

fiw 
D, 1 -exp( -4nWJD,)(1 -2nF,,/D,)* 

1 - exp( - 4n WJD,) 
Gabs = 2n2Pg(J) - -  (44) 

It is of interest to compare this formula with some of the numerical examples given 
above. Let us assume that the ‘internal region’ is simply a square well extended in- 
definitely towards decreasing deformation. The eigenvalues of the states in this well 
have spacing D, = 2n(h2EJ2B,qt)”2 where qI  is the range of the well, and the reduced 
widths of these states are &,, = h2/(B,qI), so that the reduced strength function is 
s, = l/nk, where k, is the wavenumber of the state E ,  in the well. With a numerical 
value of s, = 5.6 x (for E ,  = 2.805 MeV), rl(,) = 0.4497 keV, AI = -0.2171 keV 
and fl = 0.225 keV (from the penetration factor curve). These values are in agreement 
with the transmission curve shown in figure 6, as we would expect. However, this also 
reveals the rigidity in the phenomenological transmission factor approach to deter- 
mining fission strength functions ; departures of the reduced strength function from the 
‘infinite’ square well value lead to deviations of the fission strength function from the 
calculated transmission factor. 

(b)  Narrow R matrix levels. NumericaI calculations of the absorption cross section 
can be used to study the behaviour of the fission strength function when W, < D. Local 
averages of such calculated cross sections are defined as the uniformly averaged cross 
section over an energy interval D. The fission strength function is extracted from this 
with the use ofequation (44) and reveals that it is still very well approximated by equation 
(45). Examples of such cross sections are shown in figure 7 ;  in these examples the 
coupling width rl(c) and decay width of the intermediate state 1 are equal. 
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Figure 7. Fine structure cross section in the uniform-level model across a vibrational 
resonance with equal coupling width and decay width (TI($, = lOD,, rl(c, = lOD,). The full 
curve represents rice, = 0.01 D , ,  the long-dashed curve is for rACe, = 1.6 D ,  and the short- 
dashed curve for rACe, = 0.4 D , .  

(ii) Fine structure. The fine structure of a cross section is often described schematically 
by presenting the poles of the S matrix. In the one-channel case the S matrix is just 

- 2iP,R 
” 1-2,R’ 

S , , = l - U  =- 

With the dispersive form of equation (43) for 2, this becomes 

- 2iG,KR 
= ( q - E + i 9 q ) { ( 1 - S b p ) ( q - E - i 7 q ) - G l R }  

which has poles d given by 

(q-d--ii.W;)(l-S,,R)-G,R = 0. (45) 

Further discussion will be simplified by the assumption that $,, = 0. 
(a )  Discrete R matrix states ; broad intermediate state. The broad intermediate state 

is defined by the conditions that 2G,y:/-W;D, << 1 and *w; >> D,.  The complicated many- 
level interference can then be ignored, and the fine-structure resonances appear at 
energies Re d = E ,  + AA,  the level shifts A, being 

and with widths 
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With the above-mentioned conditions the level shifts and widths are always much less 
than the level spacings D,. In the uniform model, with one of the E ,  coinciding with 
&, the real part of equation (45) is, by symmetry, satisfied by Re E = 9). In  this instance 
the approximate solutions of Im E are Im € ‘v - G,y:/“W; agreeing with equation (46) 
above, for one pole, and Im € N - 

(b)  Discrete R matrix states ; narrow intermediate state. In the limit of vanishingly 
narrow intermediate state the poles of S, ,  are real, satisfying the equation 

for the other. 

This is identical in form with equation (23) and allows us to make the quasi-identification : 
3 ’v E,ll, E ,  ‘v E j . l ,  Gfy:(p, ‘v ( ~ . l ~ H c ~ i l , ) 2 .  For non-zero, but still very small fl 
equation (47) is still approximately true (for Re 8) and we can use the solution of Re E 
implied therein to give a first order result for Im d : 

-% I m d  ‘v 
G,C,yf/(E, - Re + 1 ‘ 

This is perfectly analogous to equation (24). 
( c )  Discrete R matrix states ; moderately broad intermediate level. The intermediate 

case has to be studied through direct numerical calculations. A typical example is shown 
in figure 8. Here “W;/Di. = 5, G J D ,  = 159.16 and y&,,/D, = 0.01 (giving r,,,,/D, = 10). 

5 
Re %IDzl 

IO 

-0.251 e 

Figure 8. S matrix poles for the cross sections in the family of figure 7 (Tlclr, = r,(<, = 1ODJ 
Open circles represent poles for TAce)/DA = 0, crosses are for rAcejDi = 0.2. 

As is well known in this type of intermediate coupling (see Lejeune and Mahaux 1968) 
the pole widths do  not follow a lorentzian form despite the fact that the fission strength 
function, as deduced from the locally-averaged absorption cross section, does. The 
corresponding absorption cross section for various values of TAce,/Di has been shown in 
figure 7. For small values of Tlce , /D,  the poles of the S function do  not differ much from 
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those shown in figure 8 but for large values they have wandering paths ; one of them is 
shown in figure 9. 

Re 
0 

Figure 9. Paths of poles for changing TAce,/DA. 

5. Conclusion 

In this paper a formal method for incorporating fission in R matrix nuclear reaction 
theory has been proposed, the discussion centring on suitable definitions of the kinetic 
energy and potential energy operators for the fission degree of freedom. From these 
basic points detailed application of the theory to the phenomenon of the Strutinsky 
double-humped fission barrier has been made, two possible treatments being considered. 
In the first of these the secondary well of the barrier (as well as the primary well) has been 
incorporated in the internal region, and this is reflected by the possibility of constructing 
the formal basis states of the internal region by coupling two distinct types of auxiliary 
state, class I and class I1 states, characterized by very different probabilities for localiza- 
tion within the primary and secondary wells. This method is particularly useful when 
the widths associated with these basis states, particularly the class I1 states, are small 
compared with the overall spacing. In the other method the secondary well is made part 
of the external region and must be taken into account in the construction of effective 
shift and penetration factors for the fission channels. These factors show dispersion 
characteristics which account for intermediate structure in the fission cross sections. 
The method is particularly applicable when the width of the intermediate structure 
resonances is many times the fine structure spacing. 

Although the two methods are particularly simple to use in extreme conditions of 
opposite kind they are both quite general in principle and can be applied to conditions 
other than the ideal ones. Such application, a few examples of which have been indicated 
in the text, require detailed numerical treatment, however. 
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Appendix. Validity of Green's theorem application to interior surfaces 

Equation (1 1) of 9 3 requires some justification. This must start with some discussion of 
the nature of the other variables that describe degrees of freedom other than that of 
extended deformation. For this purpose let us assume that we have taken W = as 
the deformation variable. A suitable set of forms for the remaining variables t j ,  j = 2 to 
3A, that satisfies the conditions d2$/at jat ,  is 

ui' 
t2 = arcsin 

' 3 A -  1 

(For simplicitly of expression, the inclusion of the centre of mass degrees of freedom has 
been neglected here.) The quantities ui are simply the 3A Cartesian coordinates of the 
A nucleons of the system. 

Some cross sections through 3A dimensional configuration space are shown in 
figures 10 and 11. In figure 10 the plane shown is that of the deformation parameter R 
and the parameter t2 .  The areas of different cross-hatching indicate different kinds of 
constraints on the remaining parameters t 3  to < 3 A  (ie different planes are shown on the 
same diagram). The main areas shown comprise single nucleon channels and general 
deformation channels as well as the internal region of interaction of all A nucleons. In 
the first case one channel is defined by u~~ as the nucleon variable while all other co- 
ordinates are confined within a residual nucleus volume constrained to deformations 
lying between b = 0.2 and 0.3 ; this is shown again for B = 0.55 to 0.65 (the upper curve). 
The third nucleon channel shown is for u 1  (or some coordinate other than u3J as the 
nucleon parameter ( f l  between 0.2 and 0.3 for the residual nucleus). In thegeneraldeforma- 
tion channel u J A  represents a typical nucleon coordinate within the deforming nucleus or 
within one of the ultimate product nuclei typical of fission. All the other coordinates U, 
and hence t3  to t 3 A ,  take on a typical set of values that correspond to the nuclear 
shapes followed in the course of fission ; they are thus generally increasing with increasing 
deformation W. Similar regions are shown for the plane 

the areas of 
apparent overlap, in these figures, of different regions of configuration space do  not in 
fact overlap. Thus, along the lines A,  B that correspond to the deformations at the two 
maxima in the Strutinsky model of the fission barrier the t 3  to 5 3 A  parameters for the 
internal region correspond to all nucleons being confined to a volume with roughly 
spheroidal shape and p values of the order of 0.45 and 0.75 respectively. Where the 
nucleon channel areas cross A and B, t3  to tJA, in two cases, and t2 to 5 3 A -  in the other 
case, correspond to the A-1 nucleons of the residual nucleons confined to volumes with 

against 5 3 A  in figure 11. 
Because of the constraints on t3  to t 3 A  (or, in figure 11, t2 to t3A-  
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RI 

Residual nucleus in 

I class I state 

Figure 10. Schematic diagram of configuration space projected against two parameters Se 
and tZ. Areas of vertical shading correspond to single nucleon channels with the residual 
nucleus in low excited states with different deformations. Areas of horizontal shading 
correspond to separated fission product channels (shown in this case for symmetric mass 
division only). The cross-shaded area //// shows the internal region defined with fission 
channel boundaries set at the scission point (indicated by the line S), and cross-shading \\\\ 
shows the internal region defined with fission channel set at the Strutinsky outer barrier B. 
The Strutinsky inner barrier A is indicated by line A. 

Figure 11. Schematic diagram of configuration spacing against parameters Se and r,". 
Shading has the same significance as in figure 10. 

deformationscorrespondingto thestrutinsky minima1 andII( -0.25 and0.6respectively) 
and one nucleon far outside this volume. So long as the excitation energy of the system 
is such that the energetically possible states of the residual nucleus do not have (with 
appreciable probability) a range of deformation that extends to the Strutinsky maxima, 
this separation of the regions is physically distinct. 

Because of the physical separation of these regions it is very convenient to draw the 
boundary of the internal region through the conventional entrances to the single 
nucleon channels (and the other light particle channels) where the system has compara- 
tively small values of W. Outside such channels the boundary can be drawn in a more 
or less arbitrary fashion through regions of vanishing wavefunction until it reaches a 
larger value corresponding to a deformation&, close to either W, or &?,(at the Strutinsky 
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maxima) along which value the boundary can be taken to mark the division between the 
internal region and the deformation channel. 

Just within this last part of the boundary the internal wavefunction of the system 
can be expanded in the form 

y k  = E @#))(W)xp(<) ( A 4  
P 

where the @#)) satisfy the Schrodinger equation for the deformation potential, (equation 
(6a)), and the ~ ~ ( 5 )  satisfy equation (6b) for the remaining degrees of freedom at fixed 
deformation W A  or 9,. The gradient of Y normal to the surface is 

2Y a@$,' 
grad, Y k  = - = E- 

392 P a 9  &. 

The reasonable physical assumption is made now that, for the low to medium excitation 
energies at  which R matrix theory is useful, the states x,, appearing in expansions (A.2) 
and (A.3) are discrete and bound, vanishing along lines o f g C  just outside the deformation 
channel region. The states X, do, in general, form a complete set and are thus capable 
in principle of describing a residual nucleus and a light particle in free space in the other 
channel regions. We now consider the integral 

the potential energy terms of the nuclear system being assumed to be self-adjoint as 
usual. The volume integral is taken over the internal region of configuration space as 
defined above. The volume element ds  is given by 

dr = h, dBh,, d t 2 . .  . h,, dt,, 

and the scaling factors are 

h, = 1 

h j  = W 1 - E cos' C 2 . .  . cos2 Sj- sin s j+ l - i  1 l I 2  

' 2 -  . i j - l  i = 2  

With the separation of the kinetic energy term as in 0 2.2 and the substitution of equation 
(A.2) the integral on the right-hand side of (A.4) becomes 

The kinetic energy operators T, have the form 

0- 3A)W cos c 2 . .  . cos t j -  sin t j  a 
hfh j+  1 

and the result of the integration over an individual Z j  in the second integral gives terms 
involving products of x,.(ax,*/~?~~) etc, evaluated at  the limits of r j .  By virtue of the 
physical assumptions made above on the nature of the wavefunctions x these products 
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vanish in the deformation channel region. The assumed orthogonality of the ,yP and the 
substitution of equation (3) for the explicit form of T9 in the first term of ( A S )  gives, 
finally, for the contribution to  (E , -E , ) J ,  dTY:Y in the deformation channel region 
the term 

that appears as expression (1 1) in the text. 
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